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Abst rac t  

The different models allowing the calculations of the rovibrational frequency shifts 
with respect to the free molecule of a molecular impurity embedded in a rare gas crystal 
are reviewed. It is shown that models which account for the translational motion of the 
impurity yield reliable results, the effects of the rare-gas translation seem to be less 
important. The different models currently used are described in detail and the computational 
procedures are discussed. Finally, it is shown that for heteronuclear diatomics, the 
translation-rotation coupling could play an important role. 

1. Introduction 

Molecules or atoms embedded in rare gas matrices constitute a large body 
of  systems for which extensive spectroscopic studies have been reported. The matrix 
isolation technique has been developed since the pioneering works of  Pimentel [1]. 
It allows the observation and identification by spectroscopy experiments of unstable 
species, such as Van der Waals complexes, ion pairs, radicals and reaction intermediates. 
The applications of  this technique have recently been reviewed by Perchard [2]. 

The interaction between the solute impurity and the host crystal, "the solvent", 
is generally very weak, and therefore the frequencies of  the spectral lines of  the 
matrix isolated systems are very close to their gas phase values. The calculation of  
the matrix shifts is carried out by a perturbational technique, and the overall quality 
of  the theoretical results is mainly related to the accuracy of  the so lu te -so lven t  
potential for which it constitutes a probe. 
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For most matrix isolated systems, the mass of  the impurity is large and its 
centre of mass is assumed to be fixed. The translation of the impurity in the cage 
is, in this case, a classical motion which is not coupled with the rotation and the 
vibration. In the case of  light impurities, this assumption is no longer valid 
and one has to design specific methods to calculate the frequency shifts which are 
able to take into account the quantified translation and its coupling with the other 
motions. 

For most molecular impurities, the rotational motion is hindered and is 
alternatively called libration. For the hydrogen molecule, pure rotational states are 
observed in the matrix. For the hydrogen rare gas pairs, there exist accurate potentials 
derived from gas phase experiments on the 1 : 1 complexes by Leroy et al. [3]. These 
potentials are expressed as a power series of the intramolecular stretching 
coordinate. Moreover, hydrogen being light has a large centre of  mass zero point 
motion. The hydrogen molecule (H 2, HD, D2) in rare gas (Ar, Kr, Xe) has 
been the subject of  numerous experimental studies [4-13]  as well as theoretical 
calculations [14-18].  

The aim of this contribution is to describe in detail and rationalize the methods 
used by our group to calculate the frequency shifts of  the vibrational and rotational 
states of a light diatomic impurity trapped in rare gas crystals. 

2. Coordinate system and expression of the Hamiltonian 

2.1. COORDINATES 

The system of  interest is made up of a diatomic impurity X, and of a set of  
N atoms of the rare gas A spherically distributed around the impurity. In principle, 
this system is described by 6 + 3N coordinates. In the case of a host crystal, N tends 
to infinity. The coordinates used in the following are depicted in fig. 1. 

Two frames are necessary. A fixed frame (x, y, z) with its origin at the 
substitutional site and its axis arbitrarily chosen along the lattice directions is used 
to define the instantaneous position vectors of the rare gas atoms (ri) and of the 
impurity centre of  mass (r0). The vectors Ri define the classical positions (fixed 
nuclei) of  the rare gas atoms and of the impurity centre of  mass, which implies in 
particular Ro = 0. The diatomic impurity is described by three other coordinates: on 
the one hand is the internuclear distance r, and on the other hand are the angular 
coordinates 0, ~ of the bond with respect to the axis of a local frame (x', y ' ,  z'), 
parallel to the fixed frame but with its origin at the centre of  mass of  the diatomic. 

The dimensionless stretching coordinate ~ defined by: 

= r -  re, (1) 
re 

in which re denotes the equilibrium bond length, will be used instead of r. 
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Fig. 1. Coordinate system. 
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2.2. THE HAMILTONIAN 

The Hamiltonian of  the whole system can be written as the sum of three 
contributions: 

H = H A + H x + HA_X,  (2) 

in which 
h2 N N N 

H A - ZV2+Z ZWA(ri,rj), (3) 
2M i=1 i=1 j<i 

tl 2 
H x = _  V 2 _ h 2 V 2 

2m ~ ~ + B(~))2 + Vin t ra (~ ) '  (4) 
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and N 
HA_ X = ~__ VA_x(ro,ri,~,O,q)). (5) 

i=1 

M and m are the masses of the matrix atoms and of the molecular impurity, respectively; 
# is the reduced mass of the latter. HA is the Hamiltonian of the rare gas atoms 
without any interaction potential with the impurity X, H x is the Hamiltonian of the 
free molecule which involves three contributions corresponding, respectively, to the 
translation ((-h2/2m)V~),  the rotation (B(~))2), and the vibration ((-hE/2#)V~ 
+ Vi,,tra(~)), and finally HA-X is the interaction potential which couples the impurity 
and the host crystal. 

2.3. STRUCTURE OF THE POTENTIALS 

The rare gas-rare  gas potentials are isotropic and are expressed as functions 
of  the only distance Rij  = I rj - ril. The rare gas- impuri ty  potentials are not isotropic 
and moreover depend upon the interatomic distance r. In the case of pair potentials, 
only one angular coordinate 09 is necessary to describe the interaction. 

In order to account for the ¢o dependence, VA-X is developed in a series of 
Legendre polynomials Pz(cosco): 

V(Roi, r, ¢oi) = ~ V z (Roi, r)P z (cos co i). (6) 

The dependence with respect to r is generally weak and it is possible to use 
a power series of the stretching coordinate ~: 

V(Roi, r, 09i) = ~ ~ ~ kP z (cos o9i )Vzk (Rol). (7) 
Z k 

3. Solution methods 

The SchrOdinger equation corresponding to the Hamiltonian of eq. (2) cannot 
be exactly solved; therefore, approximate solutions will be derived from different 
models. 

Three different models will be successively presented: first the correlated 
particle and then simpler models such as the independent particle or Hartree model, 
the Einstein model, the Vitko and Coil method [14], and the classical model in 
which additional approximations are introduced. The following subsections mainly 
deal with the formalism, the technical points being treated in a next section. 

3.1. CORRELATED PARTICLE MODEL 

This model was orginally developed by Etters and Danilowicz [19] to treat 
the hydrogen crystal. The method can be generalized to the embedding problem by 
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choosing the trial function to be variafionally optimized with the following mathematical 
structure: 

• (r o ..... rN;~,O, ~) = exp - ~  u(Ir,. - r j l )  Oi(ri -R i )  
\ i<j 

x CjMr'7 (0, (8) 
JM 

The ~ ( r i - R i )  functions describe the translation of each particle and must satisfy 
the corresponding limit conditions; the u(rij) functions appearing in the Jastrow 
prefactor exp(-~,i<ju(rij)) have an analytical form such as: 

u(r0.)>0; u(r0.)---~,,% r---~0; u(r/j)=0, r - - -~ .  (9) 

These correlation functions cancel the wave function when two particles are in the 
same place. In the case of electronic wave functions, similar situations are known 
as Coulomb holes and Fermi holes. Finally, the Z(~) function corresponds to the 
internal vibrational mode of the impurity, whereas the rotation is expanded on the 
basis of the spherical harmonics. 

The implementation of this method is very intricate and in actual calculations, 
additional approximations should be introduced. 

3.2. INDEPENDENT PARTICLE MODEL 

If the ~i functions of eq. (8) are localized in the neighbourhood of Ri, the 
product of the ~i and ~j functions is close to zero when the ith and j th  particles 
coincide. Therefore, the correlation can be neglected and one can set the Jastrow 
prefactor equal to 1. Within this approximation, eq. (8) becomes identical to eq. (9) 
of ref. [16], that is: 

N 

q,, = ~ __. 1 - [  IR i )  x I0 )1~) .  
i=0 

(lO) 

This structure of the trial wave function allows us to treat the problem by the self- 
consistent field method. The expectation value of the total Hamiltonian must be 
minimized with respect to the IRi), 10) and 14) functions: 

*)--o, 
k 

(11) 

substituting H by its expression (eqs. (2)-(5)), one obtains, I'll) being normalized: 
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h2 N N 
E= - ~  Z (Ri[V2[Ri) + Z Z (Ri'RjIVA[Ri'Rj) 

2 M  i=1 i=1 j>i 

- -  ~ (R0 [ V 2 [ R o )  - (¢[V~[~)q-(~[Vintra[~) 2m 
N 

+ (~ IBIS) (0l  j 2 1 0 )  + Z<RiRo~OIVA_x IRiRo~O); 
i=1 

variation of IRo), IRi), I~), and 10) yields: 

(12) 

(5((1)[H [(1)) = 2h--~2m [((~Ro [V2o [Ro ) + (Ro IV(~ [(~Ro)] 

N 
+ ~.,[(R~,SRo,~,OIVA_xlR~,Ro,¢,O) + (Ri,eo,¢,OlVa_xle~,6go,¢,O)] 

i=1 

2 N 

i=1 

N 
+ ~ ~,[<SR,,RjlVAIRi,Rj) + (R,,RjlVAIgRi,Rj)] 

i=1 j>i 

N 
+ ~[(fiR,,Ro,~,OIVA_xlR~,Ro,~,O)+(R~,Ro,~,OIVA_xl6R,,Ro,¢,O)] 

i=1 

~2 [ (~lv~ "l"Vintral~)"t-(~[V~ +Vinlral(~) ] 
2/.t 

+[(,5¢1B1~) + (~wBIg~>]<OI)210) 

+ 
N 

~.,[(Ri,Ro,6¢,OlVa_xlRi,eo,~,O) + (Ri,Ro,~,OIVA_xlR~,Ro,6¢,O)] 
i=1 

+ 

+ 

N 
~[(R~,Ro,~,3OIVA_xIR~,Ro,~,O) + (R~,Ro,~,OIVA_xIR~,Ro,~,60) ] 
i=1 

<¢lsl¢>[< otJ21o> + <ol)21 o>]. (13) 

This expression can be rewritten as 
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N 

g ( ~ l H l ~ )  = (tSRo IFolRo) + (RolFolSRo) + ~[(gR~IF~IR~) + (R,. IF~ Id~R~)] 
i=1 

+ (&¢lF~ I~) + (~lF~ IS~) + (SOIFo 10) + (OlEo I&O), (14) 

in which the expressions of the F 0, Fi, F~ and F o operators are, respectively: 

Nf Fo=-2- -  ~ V2 +~L~ R;~*O*VA-xRi~Odrid~dO, (15) 
i=1 

N ; 
n2 vZ~ +~ fR~VARjdrj+ R~*O*VA_xRo~Odrid~dO, (16) Fi = - 2--M j=l 

h2 N f * * *  
F~ = - - - +  Vintr + (0[)210) + ~i=1 R°RiO VA-xR°RiOdr°dridO' (17) 

Nf Fo = (~IBI~> + ~ RoR*~*VA_xRoRi~ drodrid~. 
i=1 

(18) 

The functions [R0>, IRi), I~) and 10) are normalized and can be evaluated with 
the coupled differential equations: 

Fkl~k)=e~l~k). (19) 

The calculation of the functions I~k) must be simultaneously carried out, which 
implies a self-consistent field resolution technique. 

3.3. POSSIBLE APPROXIMATIONS 

Within the framework described above, the quantified translation of each 
molecule or atom of the doped crystal is taken into account. A first approximation 
is to consider the rare gas atoms as fixed mass points. This approximation has been 
proposed [15] and is referred to as the Einstein model. It is justified by the very 
low solute-solvent mass ratio, which is at most 0.1 (D2 in argon). This model 
works very nicely and yields frequency shifts very close to those calculated with 
the independent particle (or Hartree) model. 

One can finally neglect the translations completely, and this is the classial 
model. Because the potential is not averaged, the frequency shifts are overestimated 
by at most 68%. However, this model is very efficient and the corresponding codes 
can be run very quickly. Therefore, it can be used in preliminary steps to check 
physical hypotheses. 
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In both Hartree and Einstein models,  the variational parameters are 
simultaneously optimized. This is achieved by an iterative process. In the Vilko and 
Coil approach [14], the impurity translational wave function is calculated in a first 
step in which the host crystal atoms are assumed to be fixed and unrelaxed. Then 
the expectation values of the vibrational contributions to the solute-solvent potential 
are evaluated with respect to translation, allowing the calculation of the matrix shifts. 

Although the Vitko and Coil method [14] is, in principle, different to the 
Einstein model, it implies very similar calculations since the only variational degree 
of freedom is the translation wave function. The noticeable difference between the 
numerical results obtained by the Einstein model [15] and those published by Vitko 
and Coil [14] are to be traced to the different potentials used in these calculations. 

4. Calculational procedures 

This section describes the numerical procedures used in the actual calculations 
based on the correlated particle and independent particle models. 

4.]. CORRELATED PARTICLE MODEL 

The correlation between the impurity and the host crystal is restricted to the 
first shell of neighbours. The expression of the trial wave function is therefore: 

( 
V(ro ..... / 

\ 
in which: 

and 

-~,u(roj) Oi(Ir~ -Ril)Z(~)yM(o,O), 
j=l 

(20) 

_ 1 1¢1rii)5 (21) u(r o) - 7 (  

~i (ri) = (~213/4 exp(- -~L r/21 . (22) 

The variational parameters are on the one hand the exponent of the Gaussian function 
accounting for the translations of the impurity and on the other hand the tcparameter 
of the Jastrow prefactor. The relaxation of the first shells surrounding the impurity 
as well as the exponents of the translational functions of the rare gas atoms are 
transferred from a preliminary Hartree calculation. 

The optimization of the variational parameters is achieved within the simulated 
annealing framework [21]. Only the parameter-dependent contributions of the 
Hamiltonian expectation value are required. They correspond to a reduced operator 
written as: 

N 
n" = -  t i 2  V 2 + ~ ,  UH2_cR(ro,ri). (23) 

2M i=1 
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If the Oh symmetry is assumed, the contributions due to the P2(cos o9) terms vanish 
after integration over the angular coordinates, so only the Po(cos o9) contributions 
to the potential remain. Moreover, the potential contributions corresponding to 
nonzero ~ exponents are neglected. Within these approximations, one obtains: 

(H') = 3h2a° + (qJ lW)- l~  02(ro)O~(rj)exp(-2u(roj))V(roj)G(ro,Rs)drodrj .  
4M j=l (24) 

In this equation: 

h2 2 
1)(roj) = Vu2_aR(ro,r j) + VroU(roj ) (25) 

4M 

is the sum of a potential and a kinetic contribution. Finally, 

G(ro, Rs) = l-I. Iexp(-2u(ros))cp2(rs)drs • (26) 
sc:j 

The analytical expression of the integrals to be evaluated is, in the case of Gaussian 
basis functions: 

G(ro,Rs) = 1- ! Iexp(-2u(ros))drs,  (27) 
s~3 

with 

and 

2 ~  

(~PI~I'J) = 7g15/2 d~ sin0d0 exp(-aor2)dro 

0 0 0 

12 1 f 
x 1--I ~ Ir/+Pilexp(- tcS/lr/+Pils)exp(-alriZ)dri, 

i=1 

Pi = I Ri - rol 

(~I) I D [ ~IJ) = 7~15/2 

1; 
x - -  Ir 1 

Pl 
D ~  

2/l" 7( 

- -  fa fsinOdOf dexp(- od)dro 
0 0 0 

+ Pl lexp(-~¢5/Irl + P115) v(Irl + Pl I) exp(-alr12)d ri 

e,o 

12 1 f x l ~  ~ Ir/+Pilexp(- tcS/Ir/+PilS)exp(-alriz)dri . 
i=2 

(28) 

(29) 

(30) 
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The most internal integrals (over rl, ri) are numerically evaluated by a Hermite 
quadrature. The external threefold integral is calculated by a 199 Korobov grid [20]. 
This technique allows the evaluation of  manyfold definite integrals of the form: 

I 0 

r = [ . . .  ff(x ,x2 . . . . .  xs)d ldX2...dxs, 
0 1 

(31) 

with a p-point  grid calculated from the s parameters a,: 

. . . . .  (32) 

where {aik/p} denotes the fractional part of aik/p. 
The integrals appearing in eqs. (24) and (25) can be easily transformed into 

integrals bounded in the range (0, 1). The integral over r0 is calculated in two steps: 
first over the (0, rm) interval, secondly over (r,,,,oo) with the auxiliary variable 
x = rm/r in order to have finite bounds. 

The accuracy of these numerical integrations strongly depends upon the choice 
of  the r,,, bound for which preliminary tests have to be performed. A good choice 
of r,,, yields a relative accuracy of  the order of 1/p for fourfold integrals analytically 
integrable. 

4.2. INDEPENDENT PARTICLE MODEL 

The independent particle model used in refs. [13-16] has been improved in 
order to reduce the uncertainties due to a poor representation of the translational 
wave functions. 

Calculations performed earlier used a single Gaussian function to represent 
the impurity translation. The exponent of the Gaussian was optimized on the ground- 
state energy and used afterward to calculate the harmonic translation frequency. 
This led to a rather simple algorithm and was justified for harmonic or nearly 
harmonic potentials. With a real potential, such an approximation could introduce 
uncertainties. The accuracy of the model can be improved by a formalism in which 
the impurty translation wave function is expressed as a linear combination of Gaussian 
basis functions: 

with 

l:1(ro)) = ,V__.Cjl IZi), (33) 
J 

(34) 
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Since the basis functions are eigenfunctions of the harmonicoscillator, convergence 
is rapidly achieved when the basis function exponents are simultaneously optimized. 
The set of basis functions is not an orthonormalized basis set, the expansion coefficients 
Cjl appearing in eq. (28) are calculated by a method analogous to that used in 
electronic calculations. 

4.2.1. Principle 

If the I¢i) are orthonormalized, one has to minimize the functional 

6(Oil HI@ i) (35) 

with the orthonormalization constraint 

S(@i I@j) = 0, (36) 

i.e., to solve the equation: 

H ld?i ) = ~ )1,/11 @j) = eil@i ), (37) 
J 

in which the ~'ij are Lagrange multipliers. The eigenfunctions of H being 
orthonormalized, one obtains after multiplying on the left by the (@il bra: 

gii = (@i IHI@i) = Ei, 

gij = 0; j ~ i. 

Expressing (~iI as a function of (zjl, one obtains: 

~ HIzk)Cki = e i ~  Ckilzk). 
k k 

That is, in matricial notation: 

HzC = ~Ce .  

Multiplying to the left by S T 

zTHzc = zTzCE. 

Now we define the matrices H and S: 

I-I~j = (Zi lnlz j ) ,  

slj = <zl Iz~ ); 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 
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then 

which 
usual technique: 

Let D be an auxiliary matrix such as: 

C = S-1/2D, 

HC = SCe, (44) 

can be transformed into a standard eigenvalue problem by the following 

HS-1/2D = SX/2De. 

S -~/2 is symmetric; multiplying again on the right by S -1/2 yields: 

S-1/2HS-1/ED = De. 

(45) 

(46) 

(47) 

It is then possible to simultaneously calculate D (that is, C) and e by diagonalizing 
the matrix S-1/2HS -I/2. Finally, the expression of the ground-state energy is: 

Eo = Z ~.~ CioCjoHo" (48) 
i j 

4.2.2. Calculation of the .first excited state 

The cage being assumed to be of the Oh symmetry, the ground state belongs 
to the totally symmetric AI representation of the group, whereas the first excited 
state I¢1), which is triply degenerate, belongs to the FI~ representation. It is the 
lowest state of this representation and therefore the variational principle holds. The 
basis functions used to carry out the calculations are the v = 1 three-dimensional 
harmonic oscillator eigenfunctions: 

-ow212 0 
Iz(a))  = N a rexp Y1 (~). (49) 

The calculation of the expansion coefficients of I¢1) over the basis function 
is carried out by the method previously outlined. 

4.3. OI:WIMIZATION OF THE VARIATIONAL PARAMETERS 

The approximate ground-state energy resulting from eq. (24) might have 
multiple minima depending on the parameters chosen. For these reasons, standard 
gradient procedures could fail. The simulated annealing method [21] is suitable for 
such optimizations and is sketched below. 

Let F(xl . . . . .  xi . . . . .  xn) be an N variable function; the set of the values of 
the variables {xi} is called a configuration. Starting from an initial configuration 
{xi}, the following configurations are generated by increasing successively each 
variable by an amount of Axk proportional to a random number lying in the range 
[-0.5, 0.5]. If 
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A F  = F ( x l ,  . . . .  x k + A x  k . . . .  ) - F ) x  I . . . . .  x k . . . .  ) < O, (50) 

then the new configuration is accepted; if AF is positive, a random number b in the 
range [0, 1] is generated. If e x p ( - A F / k T )  > b ( T  represents a virtual temperature 
and k is the Boltzmann constant), the new configuration is accepted. This process 
is performed until a good convergence on the {xk} is obtained and the procedure 
reiterated with lower virtual temperatures. 

4.4. CALCULATION OF THE FREQUENCY SHIFTS 

Once the variational parameters are optimized, the frequency shifts are calculated 
as follows: in a first step, the expectation values of the Vok operators defined 
by eq. (7) are evaluated. In a second step, these expectation values are added to the 
intramolecular potential: 

3 
eff 

Vok (~) = Vintra(~) q" ~ ~k <Vok >. (51) 
k=l 

The minimum of this effective potential together with the coefficients of  its 
expansion in power series of ~ are calculated. The rovibrational frequencies of the 
impurity are computed by the WKB method with the effective potential. 

In our calculation, the free molecular intramolecule potential is taken from 
Hamaguchi et al. [22]. For the isolated H2, HD and D2 species, the WKB frequencies 
are very close to the experimental ones, as shown in table 1. 

Table 1 

Calculated and observed ( ) frequencies. 

H 2 HD D 2 

So(0) 354.38 ( 354.38) 267.04 ( 267.09) 179.01 ( 179.06) 
So(I) 587.06 ( 587.05) 297.44 ( 297.52) 
Q2(0) 4161.17 (4161.17) 3631.90 (3632.10) 2993.00 (2993.55) 
QI(1) 4155.27 (2155.24) 2990.89 (2991.45) 

5. Potentials 

Two kinds of pair potentials have to be considered; on the one hand is the 
rare gas-rare  gas potential describing the host crystal, and on the other hand is the 
rare gas- impuri ty  potential which accounts for the description of the defect. 

5.1. RARE GAS POTENTIALS 

The rare gas-rare  gas potentials used in the calculations are those of Aziz 
and Chen [23], Aziz [24], and Barker et al. [25] for the Ar -Ar ,  K r - K r  and 
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X e - X e  pairs, respectively. In order to simulate three-body forces, a C9 coefficient 
has been added to the original potentials. The analytical form of  the A r - A r  and 
K r - K r  potentials is: 

V(x) = e Ax r e x p ( - ~ )  - --~ + ~ + ~ + F(x) , 

with 

(52) 

Table  2 

A r - A r ,  K r - K r  and X e - X e  potential parameters. 

Argon Krypton Xenon 

e [cm -1] 99.234 138.3 195.3 
A 0.950272 107 0.1215312 108 

A o 0.2402 
A 1 - 4 . 8 1 6 9  
A 2 - 10.9 
A 3 - 25.0 
A4 - 50.7 
A 5 - 200.0 
y 0.0 2.4 
a 16.345655 19.595151 12.5 
ct '  12.5 
C 6 1.0914254 1.1561739 1.0544 
C 8 0.6002595 0.5414923 0.1660 
C 9 - 0.0910328 - 0.1110328 - 0.1398 
Clo 0.3700113 0.2839735 0.0323 
D 1.4 1.28 

0.01 
P 59.3 
a 71.1 
r o [/~] 3.759 4.012 4.3623 

r 121 x = m ;  F ( x ) = e x p  - - 1  , x < D ;  F (x )= l ,  x > D .  (53) 
ro 

The analytical form of  the Barker et al. [25] potential is: 

V ( x ) = e  Ai(x-1) i  e x p a ( l - x )  

- -  X6+(  ~ X8+(  + X9+• xlO+I~j-I-UI(X) , ( 5 4 )  

with x = r/ro and 

u 1 (x) = ( P ( x -  1) 4 + Q(x - 1) 5) exp a'(1 - x) x > 1, 
(55) 

= 0 ,  x < l .  

Table 2 reports the numerical values of  the rare gas potential constants. 
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Table 3 

H2-rare gas potential parameters. 

Argon Krypton Xenon 

e[cm -1] 50.87 58.73 64.78 

R o [~] 3.5727 3.7181 3.9366 

fl 12.897447 12.6378219 13.7151144 
A ~ 4.449289188 105 3.683724293 105 9.1396462045 
A °l 5.483368724 105 3.388919921 105 9.1380932185 

A ~ 2.475125632 105 1.662118551 105 4.2410810605 
A m 0.0 0.0 0.0 

A m 0.946442319 105 0.830700909 105 0.9664002665 

A zl 7.665032784 105 2.821389524 105 1.5722784085 
A ~ 6.718067649 105 1.991134960 105 2.3228144685 

A ~ 0.0 0.0 0.0 

C~ 1.271397189 1.226457182 1.112474593 
C~ l 1.094630443 1 . 0 7 8 2 2 5 3 6 3  1.026612460 

C~ 0.028840393 0.035865655 0.048572250 

C~ - 0. 238871427 - 0.237750948 - 0.231454446 
C~ 0.127612358 0.125352560 0.118423377 

C~ ~ 0.279801909 0.278740269 0.270113145 

C~ 0.053928037 0.055580497 0.057490298 

C~ - 0.098261515 - 0.097807221 - 0.094199471 
C~ 0.842898814 0.969596862 0.898012760 
C~ ~ 0.850248127 0.658479797 0.802902140 

C~ 0.318960195 0.397546525 0.446359029 
C~ 0.0 0.0 0.0 

C~ 0.209166496 0.278808845 0.204631184 

C~ ~ 1.703680729 0.874675296 0.459913546 

C~ 1.494453460 0.596049103 0.256659819 

C~ 0.0 0.0 0.0 

The  damping  funct ion F(x)  o f  eq. (52) as well  as the damping  factor  5 in 
eq. (54) are in t roduced in order  to keep the potential  finite and repuls ive when r 
tends to zero.  They  prevent  against the "black hole" behav iour  o f  6 - e x p  type 
potent ia ls  during the geomet ry  opt imiza t ion  procedure .  

The  two rare g a s - r a r e  gas po ten t ia l -dependent  constants  which are mainly  
invo lved  in actual s imulat ions  o f  the doped crystal  at low pressure  are on the one  
hand the pair  potential  equi l ibr ium distance and on the o ther  hand the curvature  o f  
the potential  at the min imum.  Close values  o f  these constants  can be obta ined by 
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different kinds of pair potential and therefore the results do not depend very much 
upon the nature of  the potential. 

5.2. HYDROGEN-RARE GAS POTENTIALS 

The potentials proposed by Le Roy and Carley [3] have the Buckingham 
Comer form: 

L Rv[  C6zk - -~]D(R) .  (56) V a ( R )  = a zk exp(-flR) - ,  _-s-g- + 

D(R) is a damping function which tends to zero with R: 

D(R) = exp - 4  - 1 R < R o, 

=1 R> R o. 

(57) 

The potential parameters have been optimized in order to reproduce accurately the 
rovibrational levels of H 2 rare gas 1 : 1 complexes. These parameters are given in 
table 3. 

6. Numerical results and discussion 

6.1. TRANSLATION FREQUENCIES 

The translation frequencies calculated by the independent particle or Hartree 
model are reported in table 4. These results have been obtained by expressing the 
translational wave functions with a single basis function. The expansion over three 
Gaussian functions yields almost identical results; the discrepancies are at most 

Table 4 

Impurity translation frequencies [cm-1], ( ) corresponding harmonic frequency. 

Ar Kr Xe 

H 2 135.4 (127) 111.3 (108) 91.2 (98) 

HD 107.1 ( 97) 87.2 ( 82) 70,4 (75) 

D 2 90.9 ( 84) 74.5 ( 70) 58.6 (63) 

0.1 cm -l, that is, of the order of the numerical noise. In the cases of the argon and 
krypton matrices, the anharmonic frequencies are found to be larger than the harmonic 
ones because of a positive fourth-order term in the effective potential. An opposite 
result is observed for xenon. 
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T a b l e  5 

C a l c u l a t e d  a n d  o b s e r v e d  f r e q u e n c y  s h i f t s  [ c m - 1 ] .  

H 2 in  a r g o n  

C l a s s i c a l  E i n s t e i n  H a r t r e e  C o r r e l a t e d  

m o d e l  m o d e l  m o d e l  m o d e l  E x p .  

S o ( 0 )  - 2 . 4  - 1 . 9  - 1 . 8  - 2 . 0  - 1 . 5  

S o ( l )  - 3 . 9  - 3 . 1  - 2 . 9  - 3 . 3  - 2 . 3  

Q l ( 0 )  - 3 2 . 1  - 2 2 . 6  - 2 1 . 0  - 2 4 . 8  - 1 9 . 0  

Q ~ ( 1 )  - 3 2 . 1  - 2 2 . 6  - 2 1 . 0  - 2 4 . 8  - 19 .1  

H D  in  a r g o n  

C l a s s i c a l  E i n s t e i n  H a r t r e e  C o r r e l a t e d  

m o d e l  m o d e l  m o d e l  m o d e l  E x p .  

S o ( 0 )  - 1 .7  - 1 .4  - 1 .3  - 1 .5  - 1 .3  

Q ~ ( 0 )  - 2 5 . 8  - 17 .7  - 16.1  - 2 2 . 5  - 16 .5  

D 2 i n  a r g o n  

C l a s s i c a l  E i n s t e i n  H a r t r e e  C o r r e l a t e d  

m o d e l  m o d e l  m o d e l  m o d e l  E x p .  

S o ( 0 )  - 1 .2  - 1 .0  - 1 .0  - 1 .0  - 0 . 9  

So(1 ) - 2 . 0  - 1 .7  - 1 .6  - 1 .6  - 1 .3  

Q I ( 0 )  - 2 3 . 1  - 1 8 . 4  - 1 7 . 4  - 1 7 . 4  - 14 .5  

Q 1 ( 1 )  - 2 3 . 1  - 18 .4  - 1 7 . 4  - 1 7 . 4  - 1 4 . 7  

H 2 in  krypton 

C l a s s i c a l  E i n s t e i n  H a r t r e e  C o r r e l a t e d  

m o d e l  m o d e l  m o d e l  m o d e l  E x p .  

S o ( 0 )  - 2 . 6  - 2 . 3  - 2 . 2  - 2 . 4  - 2 . 7  

S o ( l )  - 4 . 3  - 3 . 7  - 3 . 7  - 4 . 0  - 3 . 0  

Q ~ ( 0 )  - 3 8 . 0  - 3 1 . 4  - 3 1 . 3  - 3 4 . 5  - 2 8 . 7  

Q ~ ( 1 )  - 3 8 . 0  - 3 1 . 4  - 3 1 . 3  - 3 4 . 5  - 2 9 . 1  

H D  i n  k r y p t o n  

C l a s s i c a l  E i n s t e i n  H a r t r e e  C o r r e l a t e d  

m o d e l  m o d e l  m o d e l  m o d e l  E x p .  

S o ( 0 )  - 1 .9  - 1 .7  - 1 .6  - 1 .8  - 2 . 0  

Q l ( 0 )  - 3 1 . 9  - 2 6 . 5  - 2 6 . 1  - 2 9 . 6  - 2 5 . 4  

. . . c o n t i n u e d  
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T a b l e  5 ( c o n t i n u e d )  

So(0) 
S o ( l )  

Q1(0)  

Q I ( 1 )  

D 2 in  k r y p t o n  

C l a s s i c a l  E i n s t e i n  H a r t r e e  C o r r e l a t e d  

m o d e l  m o d e l  m o d e l  m o d e l  E x p .  

- 1 . 3  - 1 . 2  - 1 . 2  - 1 . 2  - 1 . 5  

- 2 . 1  - 2 . 0  - 1 . 9  - 2 . 0  - 2 . 2  

- 2 7 . 0  - 2 3 . 9  - 2 3 . 7  - 2 4 . 6  - 2 1 . 2  

- 2 7 . 0  - 2 3 . 9  - 2 3 . 7  - 2 4 . 6  - 2 1 . 4  

H 2 in  x e n o n  

C l a s s i c a l  E i n s t e i n  H a r t r e e  C o r r e l a t e d  

m o d e l  m o d e l  m o d e l  m o d e l  E x p .  

So(0  ) - 3 .0  - 2 .8  - 2 .7  - 2 .9  - 2 .8  

So(1 ) - 5 . 0  - 4 . 6  - 4 . 6  - 4 . 7  - 3 . 8  

Q I ( 0 )  - 4 6 . 3  - 4 2 . 2  - 4 1 . 6  - 4 3 . 3  - 37 .7  

Q~(1)  - 4 6 . 3  - 4 2 . 3  - 4 1 . 6  - 4 3 . 3  - 3 7 . 9  

H D  in  x e n o n  

C l a s s i c a l  E i n s t e i n  H a r t r e e  C o r r e l a t e d  

m o d e l  m o d e l  m o d e l  m o d e l  E x p .  

So(O) - 2 .2  - 2.1 - 2.1 - 2 .2  - 2.1 

Q I ( 0 )  - 39 .8  - 3 7 . 0  - 35 .7  - 38 .1  - 3 1 . 9  

D2 in  x e n o n  

C l a s s i c a l  E i n s t e i n  H a r t r e e  C o r r e l a t e d  

m o d e l  m o d e l  m o d e l  m o d e l  E x p .  

So(0)  - 1.4 - 1.5 - 1.4 - 1.4 - 1.7 

S o ( I )  - 2 .5  - 2 .3  - 2 .3  - 2 .4  - 2 .7  

Q~(0)  - 32 .7  - 30 .5  - 30 .5  - 3 1 . 2  - 2 6 . 8  

Q l ( 1 )  - 32 .7  - 30 .5  - 30 .5  - 3 1 . 2  - 2 6 . 8  

The only available experimental results concern on the one hand H2 and D 2 
in an argon matrix [4,5] and on the other hand H 2 in krypton [4]. The experimental 
values have been deduced from combination bands observed at 82 K. Vitko and 
Coil [14] have shown that the translational frequency increases when the temperature 
is lowered. In the case of H2 in argon, the calculation indicates an increase of 
15 cm -1 when the temperature decreases from 82 to 12 K. Our calculated frequencies 
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nevertheless appear more or less overestimated, at least for argon and krypton 
matrices, for which the experimental values are, respectively, 112 and 106 cm -1 
for H2. 

6.2. VIBRATION-ROTATION LINE FREQUENCY SHIFTS 

Table 5 compares the frequency shifts of the vibration-rotation lines calculated 
by the different models to the experimental ones. 

The four models qualitatively account for the observed phenomena: the sign 
and the order of magnitude of the frequency shifts are correctly predicted as well 
as their evolution with the nature of the host crystal. However, the calculated 
frequency shifts are always larger than the experimental ones. This overestimation 
is particularly important in the case of the classical model for which the A Vcatc/AVobs 
ratio is 1.68, 1.32 and 1.24 for argon, krypton and xeonon, respectively, for the 
QI(0) line of the H2 species. For the D2 molecule, this ratio is slightly lower (1.61, 
1.28 and 1.22). If the impurity translation is accounted for, this ratio is lowered to 
1.1 for the three matrices. Figures 2 - 5  show the calculated frequency shifts as 
functions of the experimental ones. For the classical model, the points are scattered 
around the linear regression line and consequently the overall quality of the calculations 
depends upon the nature of the host cystal. In the case of the three more sophisticated 
models, the regression coefficient is of the order of 0.99, indicating a homogeneous 
quality of the calculated results. 

From these results, it appears that the "Einstein" model is accurate enough 
for this kind of problem. More sophisticated physical models fail in significantly 
improving the agreement between calculated and observed shifts. Although the 
independent particle model slightly lowers the frequency shifts with respect to the 
"Einstein" model, the correlated particle model which is expected to be more accurate 
yields, on the contrary, larger shifts. This should be due to an awkward choice of 
the Jastrow prefactor or to a variational artefact. 

It should be possible to improve the whole set of these results by scaling the 
hydrogen-rare gas pair potential. This would lead to a lowering of both the impurity 
translational frequency and of the frequency shifts. 

7. Translat ion-rotat ion coupling 

In the different models described above, the coupling between the translational 
and rotational motions of the impurity has been neglected. In these models, the 
frequency shifts of the rotational lines So and $1 are explained by the lowering of 
the Be rotational constant due to the matrix field. For the centrosymmetric species, 
namely H2 and D2, the results of the calculations are in quantitative agreement with 
experiment. On the contrary, for HD there is a large discrepancy between theory 
and experiment. Taking into account translation-rotation coupling allows one to 
overcome this difficulty. 
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The effect of  a crystalline surrounding on the rotational states of  a molecule 
has been theoretically analyzed by several authors [26,27]; in this work, we have 
considered a method originally proposed by Allavena and Rios [27]. 

Consider a molecule AB with a mass M and a rotational constant B subject 
to the crystal field applied on the molecular centre of interaction which, in general, 
does not coincide with the centre of  mass. For a system belonging to point groups 
which possess inversion among their operators, the interaction and mass centres 
coincide. In order to simplify the formalism, the simple case of  a rigid rotator 
localized in a rigid cage is treated herein. 

In this system, the centre of  mass coordinates are X, Y, Z, whereas 
those of  the interaction centre are X'  = X - d sin 0 cos ~0, Y' = Y -  d sin 0 cos ¢, 
Z' = Z -  d sin 0 cos ~, respectively. The Hamiltonian of this system is written as: 

o2 ra2 a2 o2 ] 
+ (58) 

Expanding the potential about the centre of mass yields: 

av ] .,2 v ( a 2V ") 
(59) 

wi th / ix  = sin 0 cos ¢, / iv  = sin 0 cos q~ and/ ix  = sin 0 cos ¢. Restricting the expansion 
to the second order in d, the Hamiltonian (eq. (48)) can be rewritten as the sum of  
the unperturbed Hamiltonian H ° and of  a perturbation Hi:  

H = H 0 + H 1, 

n 0 - 
2M 

t~ 2 3 2 3 2 a 2 ] 
+ ~ -  + a--uJ + M2 + v(x,r,z),  

3V HI=dHI+d2HN=-d  Z ( ~ ) / i ~  +d2 
• =x,r,z\ a~ ) 

The H ° eigenfunctions are: 

0 I~l'~t,.) = I@°)l~'), 

Z¢ a~v + . . . . .  (60) 

(61) 

in which the I @°) are the eigenfunctions of the translation Hamilt0nian and are 
solutions of the equation: 

{ hzr32 32 a2] } 
-TELa-~+TV+ a-~ + v(x,r ,x)  i.°>=e°l.°>. (62) 
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The perturbation corrections are restricted to the two first orders of the states [U?ot,,,) 
and only the d and d 2 terms are taken into account. The expressions of these 
corrections are, respectively: 

E(olt~ =(Wot,,,IHllWot,,,)=d(Wot,,,lHIIWotm ) + d2(WotmlHnlWotm), (63) 

E (2) a2n~ I (~0t" 1 HI I ~or,~')l 2 
o,,. = - ~ ~ E ° - Eg + 8[r(r  + 1)- l(l + 1)]" 

(64) 

The following matrix elements have thus to be evaluated: (q"ot~ IHIlqJ,u',,, ') and 
(qJot,,, IHn[q'ot,,0. The expressions of the matrix elements of H I and H n are: 

( o ) ;  . . (q,o,,,inlihuo,,,,) = ~o 0V ~ ,  Y/ /.t,Y r df~, 
"r= X ,Y ,Z f l  

(65) 

a2V [ ~o > !  ytm*/.t,/.t,,ytmd~ (66) 

In a first step, the direction cosines/.tT are expressed in terms of spherical harmonics: 

(_~f,2 /.t x = s i n 0 c o s ~  = - [Yll(~)  + YI-'(~)] ,  

(~;11'2 /.t r =sin0cos~0= i [yil(f~)- yl-l(f2)], 

(~)1,2 
#z = cos 0 = YI° (£2), (67) 

i~/1,2 / ~  1,2 (~/1,2 I'tx#x k 15 ) [Y22(~) + y2-1(f2)]- \ 4 5 )  Y°(f2) + Y°(D')' 

~x~  =-  i ~-i7 j [ q ( ~ -  r~-:<~], 

_(4~/~': 
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=--z2g"l12 2 '~ '14rC11/2 

14~'~I12 I ~'"'--' i~J P~<°>- ~,-'<°>I, 

#z#z  \ " ~ - )  ¥ o ( ~ ) +  yo(n) .  (68) 

t..,Mmm' The integrals over the angular coordinates are then expressed as sums of the '--ur 
coefficients defined by Harris [28]: 

cM,.,., f r~'~"r;"'dn. lat" = (69) 

Unless the following requirements are satisfied, these coefficients are zero: 

(1) M=m+m'; 
(2) L+l+l'=2k; 

(3) II-ll<L<l+l'; 

(4) L> IMI. 

keN; 

(70) 

The nonzero coefficients are functions of the 3j symbols: 

c Mrartt" I LIt" = (_I)M (2L+1)(21+1)(21" +1)]1/2( L 
~ 'J k.O 

The nonzero matrix elements are therefore: 

l ~ l l  L l 
0 m ~'1" 

(71) 

"-'ll+II \ 0 ov I o} 
OX OY 

i@l',' (~oimlHll~u.t-lm-1)= "tt-ll \ O]ox- 'oy  , 
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(I ('Voz,.Inh",'./_l,.+l)= ,-,,,,,.+11 ooo ax " l l - 1 1  i 0 ° , 

(%,.,iHllit'~i_l,,,):-(-~)liEch_"~i°<'lJ°laVlo°\ 
azl "1' 

a2V o (qs°tmlHil'F"')= [ -- t-'~')(mff~l/2~man0]( j -~d-f +-~-f 32V 32V +-~lOn 5, 

3(2/r)1/2 ram0 0 aZv ~0~ 

pMm~' The values of the "~ur coefficients are give by 

¢ 5_.5_'] 1/2 3m 2 - 12 - l 
C~"° = - \4~z) (2/+3)(2l-1)' 

" "al/2 mmO 3(l-m+l)(l+m+l)[ , 
C;l+l : 4 - - ~ / ~ 7 )  J 

,,~o 3(l-m)(l+m) ] 1/2, 
Ctl-ll = 4~(2l+ 1)(2l- 1) 

= - [ 3 ( 1 - m  + 1 ) ( l - m  + 2)] 112, 
CI~+ITll L ~ ~ - ~  J 

L 
,,-,, L ~-(2~+ 1)-~ _-~ j 

cram+l-1 =[3(i+m+l)(l+m+ 2)] 1/2, 
"+" L ~ .-777-+ 3-7775 77 j 

Cmm+l-I -3(l-m-1)(l-m)] 112 

(72) 

(73) 
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Substituting into eq. (54), one obtains: 

E(,) =d21 12+/-l+m [O00 
\ 

32V 
-dU 

02V --o\ 212+21-2m2 

+ 3 7  q~o/+ (2 / -  1)(2/+ 3) 

o 32V o (ool  loo)}, 
(74) 

E(2)=_d2I( l+l ) ( l+2)+m2~,  I(~o0 I-~- + ~y I*0)I B 
L ~ ~  n En-Eo+2Bhc(l+l) 

(l+1)2 _m 2 i(~0 av 0 

+ (2/+ 1)(2/+ 3) ~n En - Eo + 2Bhc(l + 1) 

+ 

/d~O 3V 3V ..f.Ox,2 
l( l-1)+m 2 ,g, \ o -g~+-~ wnl 

2(2l+1)(2/-1) ~ E, , -E o +2Bhcl 

12_m 2 I(*° [-~-~]*°) 12 1 
+ (2/+ I)(2/-I)n ~ En----~0 +--~wlJ" (75) 

For an Oh symmetry cage, these expressions are simplified and the total correction 
becomes: 

AEI=d2(* 0 --~2V *0 IO\ 

21 + 1 (l + 1) E n - E o + 2Bhc(l + 1) 

/¢)0 3V O0\ 2 ] 
I\ 01~-I nil 

+ l~_, E n - - - ~ 0 + ~ l ) J "  (76) 

The correction contains a term which does not depend upon the molecular rotational 
state and a contribution which is a function of the rotational quantum number l. For 
a centrosymmetric molecule, d = 1 and the rotational levels remain unperturbed. 
Assuming V(X, Y, Z) to be an harmonic potential corresponding to the frequency ¢o 
and taking 0"= w/B, one obtains for the So frequency shift: 

Av=_81r2Mco~4d2[.( 6 ] 
B2h 0"+6)(0"+2)(0-4)o  " 

(77) 

Av =rio9) is plotted in fig. 6 for HD (B = 45,655 cm-~). The frequency shifts observed 
in the different rare gases are reported in this figure and appear to be in satisfactory 
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agreement with the calculation. This model is therefore suitable to explain the 
anomalous shifts observed for HD. 

8. Conclusion 

The use of different levels of approximation in the calculation of the rovibrational 
frequency shifts of isotropic hydrogen molecules embedded in a rare gas matrix 
shows the importance of a convenient treatment of the impurity translational motion. 
On the one hand, unless it is not treated quantum mechanically, the calculated shifts 
are too large by about 50%. On the other hand, for the HD species, the rotation- 
translation coupling must be introduced to explain the blue shifts observed in argon 
and krypton for the pure rotational transition. It must be noted that the small 
discrepancies between the calculated results [ 15-18] and the previous experimental 
ones [7,8] suggested to Alikhani et al. to reinvestigate the spectra [11-13]. These 
authors were able to rationalize the experimental data, in particular, to discriminate 
the lines due to polymeric species from those belonging to true monomers and to 
evidence the anomalous blue shift of the HD So(0) transition frequency. 
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